Exercise 5

Find an equation of the tangent line to the curve at the given point.

$$
y=4 x-3 x^{2}, \quad(2,-4)
$$

Solution

Start by finding the slope of the tangent line to the curve at $x=2$.

$$
\begin{aligned}
m=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} & =\lim _{x \rightarrow 2} \frac{\left(4 x-3 x^{2}\right)-\left[4(2)-3(2)^{2}\right]}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\left(4 x-3 x^{2}\right)-(-4)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{-3 x^{2}+4 x+4}{x-2} \\
& =-\lim _{x \rightarrow 2} \frac{3 x^{2}-4 x-4}{x-2} \\
& =-\lim _{x \rightarrow 2} \frac{(3 x+2)(x-2)}{x-2} \\
& =-\lim _{x \rightarrow 2}(3 x+2) \\
& =-[3(2)+2] \\
& =-8
\end{aligned}
$$

The general equation of a line is

$$
y=m x+b .
$$

Here the slope is $m=-8$.

$$
y=-8 x+b
$$

Use the fact that the line passes through $(2,-4)$ to determine b.

$$
\begin{gathered}
-4=-8(2)+b \\
-4=-16+b \\
b=12
\end{gathered}
$$

Therefore,

$$
y=-8 x+12
$$

Below is a plot of the curve and the tangent line at $x=2$.

